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Introduction

e seek the solution vector x in Hilbert space H for

the linear system Ax =y, where : € H is given in advance and A
is a b;)unded linear invertible operator on H. We shall compare
convergence of two-part splittings (i.e., linear stationary methods
of first degree) with convergence of three-part splittings (i.e.,
linear st:»at_ionaty methods of second degree). In fact, we write the ol

two-part and three-part splittings of A as follows:

A=A +aA, (1.1a)
and A =A; +A, +A,, (1.1b)

where Ay A2', A, and A3 are all l?ounded linear operators on H and

5 is presumed easy to compute (for exAmple, if H is finite-

Ay
dimensional, then A, might be represented by a diagonal matrix). We
are now ready to define the respectively induced two-part and three-

part sequences, [xk'] and (x ].

Definition 1.1. Given A = A, + A,' wvhere Ay' = A, + A4, with
fixed y, € H. Then for any x, = xo' € H the two-part sequence
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Alx‘:_'_l +A2'x1: Y s k=01.2,.,.

The three-part sequence [xk] is defined iteratively by

M¥r2 * A% t A% = Y s k= 0,1,2,... (1.2b)

Note that if either the two-part sequence {xk'} or the three-
part sequence [xk] converges, then since A is invertible, convergence
is necessarily to the solution vector x where Ax = Yo+ ‘We shall
comment on the case where A is singular, at the end of this paper.
Now if A is a non-singular matrix on finite-dimensional H, then

consider A may be decomposed as

A=D+EG+F,

where D is the diagonal part of A, E is the (lower triangular) matrix
whose entries match those of A below the main diagonal and F is the
corresponding upper triangular matrix taken from the entries of A

above the main diagonal. The two-part splitting (l.la) then yields

the well-known schemes

(a) Choosing A, = D, we have the Jacobi iteration scheme,
(b) Choosing A; =D + E, we have the Gauss-Seidel iteration

scheme, (1.2¢)
(c) Choosing A = éD +E, with 0 < w <2 , we have

the successive overrelaxation (SOR) method.

Three-part splittings are given mention in (7] and [9]. Also, in a

paper of J. D. P. Donnelly, a theorem on chaotic relaxation is proven 1
(5, Theorem 2.1]. This result is recaptured (and generalized) in the ;
setting of three-part splittings, cf. [2, Theorem 5.4].




How are the two-part and three-part splittings related? Observe

El | that (1.2b) is equivalent to
E | 2 i s
X2 Ay Ay tA Al Xy AL Yo (1.3)
- +
e+l I 0 *x 0 ’
E | t } t ¢
z .
: k+l B, Z, b

where X X in H if and only if Z, * 2= [:] in H @ H. Moieover,
| since (1.3) is the result of a two-part splitting on H @ H,

@, - 2) = B, - 2). (1.4)

Compare (1.4) to the condition resulting from the two-part splitting
(1.1a), viz.,

:
!
i
|
B
!

.

1

(xk' -x) = Bk(x° - x), B=-A""A,'. . (1.5)

In other words, as B = -Al'Az is the transition (or iteration)
operator for the two-part splitting (l.la), so is B, (given in (1.3))
the transition matrix operator induced by the three-part splitting
(1.1b). The importance of these remarks is that a sufficient condi-
tion for the convergence of sequences [xk'] of (1.2a) or [xk} of
(1.2b) is that the spectral radius of the respective transition oper-

ators p(B), and p(Bz), be less one (this condition is necessary for

. finite-dimensional H). We are ready for the following definition:

Definition 1.2. Given the sequences [xk'] of (1.2a) and (xk] of

(1.2b), then their respective asymptotic copvergence rates, R' and R,
are given by

R'= -log; or(B),

R = "10810 P(Bz)s




|
i
E |
H

|
|

1A2' from (1.la) and B, is given in (1.3).

wﬁere_ﬁ - -Al'
Remark. We indicate base ten in the definition above only as a
convenience since 1/R will then indicate, roughly, the number of
iterations or "hits'" which will produce one more decimal place of

accuracy (cf. [8, page 63]).

We conclude this section with an explicit statement of the goals

of this paper. Given Alxk+2 + Azxk+1 + A3xk -7, with A1 fixed

(and presumed easy to invert). Then we seek to

1) Explicitly construct Aj (and hence, Az).
(Theorem 2.1, display (2.2), Hypothesis 3),

2) Explicitly compute p(B,), and to

3) Compare with p(B) (noting that A = A; + A,' = A,(I-B)).
(Theorem 3.1, display (3.4) if p(B) is real; Theorem
3.3 1if p(B) is imaginary.)

Thus, if for a fixed two-part splitting A = A; +A,', we can define
that A,y in the three-part splitting A = Ap + Ay + Aq where p(Bz) <1
and p(B;) < p(B), then we will have established the greater conver-
gence rate of {x ]} in (1.2b) over that of {xk'] in (1.2a),.

2. Relating o(B) and o(B,) via analytic ¢.

-l ecall that we are attempting to compare the spectral

radius p(B) of iteration operator B (see 1.5)) with the spectral radius
p(By) of the iteration matrix operator B, (see (1.3), (1.4)). In the
following theorem, we assume that some bounds on o(B), the spectrum

of B, are known (Theorem 2.1, Hypothesis 1), Then, Aj is explicitly




constructed as a certain analytic operator function of B (Hypothesis

3). ‘This automatically fixes A, and hence, defines B, in (L.3). The
theorem characterizes a(Bz) in terms of o(B), depending on the analy-
tic ¢(*) chosen (cf. (2.3)).

Theorem 2.1 ([4, Th. 3.1]). Given invertible A = A; + (4, + 4Aj)
where -B = Al'l(Az + A3). Suppose
1. o(-B) lies inside the cardioid (cf. Figure 1)

)

; C={22(1 +Re(@)) - 1: Z = 19} . (2.1)

2. ¢(°) is a complex analtyic function whose domain of defini-
tion contains ¢(-B), and does not assume the value -1 on

o(-B).

-B) +
Ay = A o(-BIESER T, (2.2)

where ¢(-B) is the corresponding analytic operator-valued
function of -B, and I is the identity operator. Then with
B, given in (1.3),

-9(By) = o(¢(B)) U e

2+2). (2.3)

¢:B i
Proof. Use ¢(-B) to define U,V and A5 as follows:
| U= ¢(-B)

v - (g

Ay = AUV .

Then verify the identity

'B'U+V+UV.
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1
Let W= [ ] so that W'IBZW (which has the same spectrum as BZ)
1 )
has form
3 U 0
W nzw = '
-I Vv

= 6(B;) = (W 'BW) = o(U) U a(V) .

The conclusion now follows, and the proof is done. ®

Remark. Why does the cardiod C (Figure 1) enter into the theorem

in (2.1)? The reason is that we require that p(Bz) <1 so0 as to
guarantee convergence. It is shown in [2, pg. 335] that it is just
this condition, p(Bz) < 1, that implies ¢(-B) is a subset of the
interior of cardioid C. In the special case where ¢(°*) is a constant,
however, bounding ¢(-B) by C is too crude. In fact, we note that for

constant ¢(Z) = s # -1, we have
p(By) <1 = o(-B) € (z:|z-1| < 2} , (2.4)

the proof of which is in [4, Prop. 3.3].

3. The case ¢(Z) is constant.

enceforth, we assume that analytic ¢(Z) = s ¥ -1 for

J

fixed complexes and all complex Z. In operator terms, ¢(B) = sI, for

~all operators B on H. One immediate simplication is that A, is easy




to compute, given the representation A = Ay + Ay + A, with Aq defined
in (2.2) as Hypothesis 3 of Theorem 2.l1. 1In fact, equation (1.2b)
for the three-part splitting (using (2.2) with ¢(Z) = s) reduces to

-1 1 '
X2 = A A (ST Bl ST %) |
(3.1)

P ((l-s)xk+1 + sxk) + Al-lyo ’

where complex s # - 1, A = A; + A, + A, = A, (I-B) = A, +4A,".
: 1 2 3 1 1 2

Remark. If complex s is chosen to be zero, then (3.1), the equiva-
lent to the three-part expression (l1l.2b), reduces to the two-part

splitting (1l.2a).

We give an analysis of three-part convergence versus two-part
convergence for A = A;(I-B) in the following two case of the
iteration operator B, viz., when the spectrum of B, ¢(B), is real,

and when it is pure imaginary.

3.1 Case (A): A = Aljl:p), o(B) is real (¢9(Z) = s = constant).

e have already noted that if p(Bz) <1, for B, given

in (1.3), then, necessarily, o(-B) is a subset of the interior of
cardioid C of (2.1), and if analytic ¢ is constant, then ¢(-B) is a
subset of the open disc in the complex plane centered at real 1, having
radius 2 (cf. (2.4)). 1f, moreover, ¢(B) is real, then this reduces

to the condition that there exists real a, § € ¢(-B) such that for

all A € 0(-B), -1 <a* A £ 8 <3, The next theorem responds to the
following:
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Here is that theorem now.

1) What is the optimal real s, call it s, , we may assign

to ¢(-B) = sI so as to give optimal p(Bz), the minimal
spectral radius of B, of (1.3)? Note that B, depends on
the choice of Aq from (1.3), and A3, in turn, depends on
¢(-B) = sI from (2.2).

2) Given optimal s, , what is the explicit value of the
optimal, or minimal p(Bz) as a functioﬁ of the spectral

radius p(B)?

'

Theorem 3.1l. Given A = Al(I-B), o(B) real (where Al'l is easy to

compute). Suppose &,8 € o(-B) where fore all A € o(-B),
-l<as A= <3, - (3.2)

Let m denote the midpoint of ¢(-B), i.e.,

m=228 -(3.3}

Then, according to whether m > 0 or m < 0, we have

Ifms -1+ /T F p(B) : I1fmz -1+ /T F p(B) "
Then R e
8, = m ’o"l"'m m>0
Po(By) = 1 Fa Po(Bg) = -1 + JI ¥ p(B) ip(B)-B)
(3.4)
t
m<O0
p(B)=-a
}




By setting ¢(-B) = s,I in (2.2j, we construct that B, in (1.3) whose

specéral radius is minimal relative to all ¢(-B) = sl, as s varies

over all real s.

Moreover, in all four cases in the table, above, three-part

convergence is better than two-part convergence in the sense that

p(By) < p(B), or

(3.5)
R > R' (cf. Def. 1.2),

]

On the proof of Theorem 3.1. Complete details appear in [4, section

5]. The proof depends on several technical lemmas whose end objec-
tive is to establish that p(Bz) = f v g, the maximum of a pair of
functions £ and g, each defined for real s (recall that ¢(-B) = sI).
The optimal.(smallest) value of p(BZ)’ which we denote po(Bz), is
coqputed as the minimum of £ Q g. These are the values given for

po(Bz) in the table above.®

Remark. Observe that in case the midpoint m < 0, then it is automatic
that p(B) <1 , so that in the table (3.4), the expression /T - p(B)
is always well defined. Also, when m # 0, we produce an s, Where
po(Bz) in all four categories is always less than p(B). This is easy
to confirm directly from the table (3.4).

Example 3.2. Consider the 3x3 matrix A and its decompositions
1 01
A= |1 10
- S e |

= AI(I - d&) (SOR decomposition) (3.6)

-« I-1]-1 0 O (Jacobi decomposition)




Sy

where for all w, 0 <w <2, £, the SOR iteration matrix (cf. (1.2¢c))

given by
8 ]
w-1 0 w
B=-t = ~w(w-1) w-1 -w2 3.7)
wZ(u-1)  -w(u-1) wi+el | .
e =

Note that (3.6) presents two two-part splittings for A, viz., the

SOR decomposition with iteration matrix, B = £, and the point-Jacobi
decomposition with iteration matrix J. Note that J is consistently
ordered, cyclic of index three with eigenvalues equal to the cube
roots of -1, Under these conditions, we may use ¢(J) the spectrum
of J, to find o(£)), the spectrum of £ [8, Theorem 4.3]. In fact,
let w, 0 <w < 2 define £ in (3.7). Let J be given as in (3.6).
Then

for all A € o(J), we have p € o(£,) if and only if
(A+w-1)°3+a23 =0, (3.8
Let us select
w = w, = 0.897107 (3.9)
which, from (3.8) yields the spectrum of the SOR iteration matrix
{wo, l.e., for w, = 0.897107,
a(-two) = (-0.026473, 0.211778, 0.211791},

so that the hypotheses (3.2) and (3.3) of Theorem 3.1 write themselves

as follows:

a = -0.026473 ,

B = 0.211791 = p(£, = B) (3.10)
o

m = 0.092659 .




o o

T

Fit=

—

/.
From this, the SOR convergence rate for the two-part splitting of

(3.6) is
R'= -loglo(p(imo)) ~ 0.674. (3.11)

Note. By trial and error, it seems the wé of (3.9) is optimal,

i.e., produces the smallest p(£,). In any case, the fact that the
midpoint m of (3.10) is not zero, guarantees that improved convergence
must result in passing to the three-part splitting. In particular,
from (3.10) m? < -aand m > 0. From (3.4) in Theorem 3.1, we see

that optimal s, is
8, =m~ 0.092659,

while optimal (smallest) spectral radius p(BZ) is

p(By) = 2PL-1 « 0,109,

which defines the three-part convergence rate
R= -loglo(p(Bz)) ~ 0,962 (3.12)

(compare with(3.11)),

Finally, note that the three-part convergence rate (3.12) pre-
dicts (asymptotically) 1/R =~ 1 iteration for each decimal place of
accuracy, while the two-part SOR rare R' of (3.1ll) predicts 1/R' ~ 1.5
iterations per additional decimal place of accuracy. We found in
actual numerical examples with various values of Yo for Ax = Yo?

and for various initial vectors x_, that these asymptotic convergence

o’
rates manifested themselves after only seven or eight iterations.
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2,

3.2 Case (B): A =A,(I-B), 0o(B) is imaginary (¢(z) = s = constant
n the previous section (o(B) real), any two part

splitting A = A; + A, = A(I-B), whose iteration operator B had an
unbalanced spectrum about the origin (m # 0) would always yield to
improvement convergence rate by passing to the three-part splitting

(Theorem 3.1). This section considers the case when o(B) is on the

imaginary axis which proves to be far simpler than the real case.
First, observe that since.analytic ¢(Z) = s is constant, o(B), the
spectrum of B lies inside the circle of radius two, centered at real
1 (c£. (2.4)). This means that all A in for o(B) imaginary, we have 1
|A\] < /3. The imaginary o(B) proves simpler than the real o(B) |
| because whenever p(B) < 43 (so that the two part sequence [xk'] may
i diverge), the three-part splitting will always produce a convergent

b sequence [xk}. Moreover, no restrictions on the imaginary midpoint

apply. The following theorem states the details for passing to the : | 14

optimal three-part splitting (l.2b) via construction of A3 as per
(2.2) for specifically defined constant ¢(-B) = sI.

Theorem 3.3. Given A = A{(1-B), o(B) imaginary (where Al'l is easy
to compute). Suppose p(B) < /3. Then

case (a): 1If iEE:_l < p(B)2 < 3 (0.786 = p(B) < 1.732) then
the optimal s = s, is the unique real solution in (;p(B),p(B)) to
the polynomial

o' +28° - o2 =0, (05 5| < p(B))
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Moreover, the optimal (smallest) p(Bz) is then given by
P(By)optimal = lsgl - ;

case (b): 1f 0 < p(®)% s 5L (0<p(B) s 0.786), then the
optimal s = So is given by

2
in which case the optimal p(Bz) is given by

P(B2)optimal = «/1—:&)_7 :

p(B)

For case (a) and case (b) above,

p(By) <1, and p(By) < p (B).

On_the proof of Theorem 3.3. The complete proof requires the struc-
ture theorem of three-part splittings for constant ¢(Z) = s (4,

Theorem 4.2], which we do not present here. ®

Remark. Observe from the statement of Theorem 3.3, case (a), that
even if A = A;(I - B), where p(B) is near to unity (so that (xk']
converges slowly, if at all), then the three-part splitting guarantees

a p(Bz) very near to s, where 804 3

+ Zs° -1=0, i.e., p(Bz) ~
0.7167 (so that (xk] converges), That is, although the two-part
convergence rate R' = loglo(p(B)) ~ 0, we have the three-part
convergence rate R = -loglo(p(Bz)) » 0.14. This fact holds regard-

less of the size of the system. To illustrate, consider the

following example.
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1 1,
E | Example 3.4
E The class 7 of n x n matrices, n varies, is defined by

ad=(A(n):n = 1,2,3,...} where each A(n) is the

tridiagonal n x n matrix

Srans
A@) = |12 1 = 21_(1_-B(n)) .
12
......1
o -12]. | ‘
I v i

Accordingly, the n x n skew-symmetric iteration matrix B(n) for the

two-part splitting A(n) = 2I_ + A,' = 21 (1, - B(n)) is

0o -1 0
| 10 -l
': B(n) = % 1 0 .
L) l. -1
0 .‘1 H (]
. i

Now the n-element, imaginary spectrum ¢(B(n)), which depends on n, is

o(B(n)) = {i cos(nk—:—f) t k = 1,2,...n}

so that

p(B(n)) = cos(-ﬁ—_rlr_—-r)' lasnt=. i

(See [1, page 380, Ex. 8, 9] for a related example.)
Now for n = 4, case (a) of Theorem (3.3) applies. That is,

supponse A(n)x = y Then as n + =, the three-part splitting will

! o.
produce a convergent sequence {x, }, which eventually has every seventh

term (1/R ~ 7) yielding one more decimal place of accuracy, while the




two-part sequence {xk'] (given skew-symmetric iteration matrix B(n))
becomes slower and slower in its convergence.
Actual computations reveal that even when n is large, the asymp-

totic convergence rate prevails after only about a dozen iterations.

4. Some open questions

l ecall that our investigation of three-part splittings

(1.1b) for invertible operator A on H relied on the imbedding (1.3)

as a two-part splitting on the larger space H ® H; for this reason,
convergence rate analysis of {(x ]} versus that of (xk'] (cf. Def. 1.1)
is effected by comparing the spectral radius of B, of (1.3) with that
of B in (1.5).

Given fixed iteration operator B for A = A,(I-B) (equivalently,
invertible A is fixed) therefore, we constructed B, by first
analytically defining ¢(B) which, in turn, fixes Ag (cf. (2.2) of
Theorem 2.1), and hence, also fixes A,y in the expression A = A+
Ay + A4,

This paper proceeds under two restrictions, namely that the
analytic function ¢ is a constant s (in operator terms, ¢B = sl),
and that the operators A = A; + Az' and A; are both invertible; Al'l
is supposedly easy to compute. Some work has been done in each of
these areas where these two restrictions are relaxed. We briefly

mention these results, while indicating paths of further exploration.

When analytic ¢(°¢) is not constant. In (2, p. 336), linear

analytic ¢(Z) = Pz + Py is explored under the assumption that o(-B)
lies in the circle centered at 1, having radius two. This constraint

on 0(-B) is necessary if ¢ is given in advance as a constant function

(see Remarks at the end of section 2),
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/¢.
In (3), non-constant ¢ is also studied. The main difficulty is
in tﬁe computation of A3 in (2.2) which involves the inverse of
(¢(-B) + I); in (2], this entails the computation of (-p;B +
; (p2 + 1)1)'1 which may be as difficult as the computation for A'l,
the inverse of the original operator A. (Of course, in the present

paper, where ¢(B) = sI, then (¢(-B) + I).1 is just the scaler operator

s s

& (s + 1)-11. Hence the questions:

4.1 Given the operator A, and the invertible component‘Al_Lso

that A = A; +A,'), and given the explicit construction of

ST L ol

? A, for analytic ¢ in (2.2), what is the convergence rate of

the three-part sequence {xk] defined by A = A1 + A2 +-A3‘

compared to that of the two-part sequence Lgk'] defined by

A=A + Ay (necessdrilyl;Az' = A, +A;), when analytic

9 1s not constant?

4.2 Moreover, under what circumstances, or for which ¢, are the

operator terms A, and A, easy to compute? (More exactly,

-1 e .
since from (1.2b), X4 = A Agxy 1 - A 1A3xk + 4y lyo,

we require easy computation only of the operator products

&l 1
A

Ay A1-1A3 and, of course, A, .

When A is not invertible. 1In a paper of Michael Neumann [6], three-

part splittings are studied for non-invertible operators on finite-
dimensional Hilbert space H, i.e., for rectangular matrices A. Given
that A is m x n matrix (an operator sending n-space to m-space by
left-hand multiplication on the columns), and given Yo in m-space, we
are to find x in n-space such that Ax = Yo+ Either a solution vector
x exists, or else the system is not solvable, i.e., an approximate or

best solution may be obtained. In the second instance, Neumann writes
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A=A+ A,y
where the splitting is subproper, i.e.,
rg(A) < rg(A;) and n(A) = n(Al),

where rg(*) and n(*) indicate range and nullspace, respectively. 1f
equality obtains, the splitting is proper. The idea then is to

compose the iteration matrix
B - : + '
B A, Ay

where A1+ is the Moore-Penrose generalized inverse of Al. Thus, a
counterpart to matrix 82 of (1.3) is possible. Under these more
general conditions, Neumann considers two cases, viz., when A1+h2'

is or is not weakly convergent (A1+k2' is weakly convergent means

the splitting A = A; + A,' is subproper, A € (A1+h2') = |A] =1, and
the Jordan blocks corresponding to A = 1 are of order one),
Case (a) [(6]). -B = Al+h2' is not weakly convergent: the cpnstraint
here is that e(-B) c c® u {-1}, where c® is the interior of the
cardioid C of (2.1).
Case (b) -B = A1+h2' is weakly convergent. Then it is further
assumed that o(-B) < {Z:Re(Z) =2 0} u {-1}.

Among many other things, Newmann exhibits certain analytic ¢
qhich effect A3 in the construction of the generalized three-part
splitting

A"Al +A2 +A3.

The question is raised, therefore

4.3 Can specificially computed convergence rates be given A
for non-invertible matrices A under a three-part splitting,
lative to rates under a two-part s litting?




3.

4.

6.

7.

9.

4.4 Caﬁ the results of Neumann be extended to the operator

cagse for infinite-dimensional Hilbert space H?
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